Organocatalytic One-Pot Asymmetric Synthesis of Thiolated Spiro- γ lactam Oxindoles Bearing Three Stereocenters

Xin Huang, ${ }^{\dagger}$ Miao Liu, ${ }^{\dagger}$ Kenny Pham, ${ }^{\dagger}$ Xiaofeng Zhang, ${ }^{\dagger}$ Wen-Bin Yi, ${ }^{\ddagger}$ Jerry P. Jasinski, ${ }^{\S}$ and Wei Zhang*, ${ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry, University of Massachusetts, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
${ }^{\dagger}$ School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
${ }^{\$}$ Department of Chemistry, Keene State College, Keene, New Hampshire 03435-2001, United States

S Supporting Information

Abstract

The first asymmetric synthesis of spiro- γ-lactam oxindoles bearing three stereocenters is reported. One-pot thiolMichael/Mannich/lactamization reactions promoted by a recyclable fluorous bifunctional cinchona alkaloid/thiourea organocatalyst afford products in moderate to good yields with up to 95% ee and $6: 1 \mathrm{dr}$.

INTRODUCTION

The privileged γ-lactam scaffold can be found in a number of biologically active compounds ${ }^{1}$ such as natural product lactacystin $\mathbf{A},{ }^{2}$ synthetic $\mathrm{p} 53-\mathrm{HDMA}$ inhibitor $\mathbf{B},{ }^{3}$ racemic antituberculosis agent $\mathbf{C},{ }^{4}$ and CRTH2 receptor antagonist \mathbf{D}^{5} (Figure 1). These compounds are thiolated γ-lactams or have a spirooxindole skeleton. ${ }^{6}$ The development of new methods for efficient synthesis of thiolated spiro- γ-lactam analogs bearing multiple stereocenters is desirable for both synthetic and medicinal chemistry considerations.

A number of diastereoselective ${ }^{7}$ and enantioselective ${ }^{8}$ methods for spiro- γ-lactam oxindoles have been reported. Among the methods for asymmetric synthesis, organocatalytic $[3+2]$ annulation of imines and enals (Scheme 1, A) ${ }^{9}$ or Michael addition-initiated cascade reactions of 3 -aminooxindoles and α, β-unsaturated acyl phosphonates (Scheme 1, B) ${ }^{10}$ are two general protocols for spiro- γ-lactam oxindoles 1 bearing two stereocenters. These methods have also been applied for asymmetric synthesis of spiroheterocyclic oxindoles including spiro- γ-thiolactam oxindoles, ${ }^{11}$ spiro- δ-lactam oxindoles, ${ }^{12}$ spiro- γ-lactone oxindoles, ${ }^{13}$ spiro- δ-lactone oxindoles, ${ }^{14}$ and spiropyrrolidine oxindoles. ${ }^{15}$ To the best of our knowledge, there is no synthetic method for spiro- γ-lactam oxindoles bearing more than two stereocenters. Introduced in this paper is the first reaction sequence for spiro- γ-lactam oxindoles 2 bearing three contiguous stereocenters, including one quaternary and two tertiary carbons, on the γ-lactam ring.

RESULTS AND DISCUSSION

The proposed one-pot thiol-Michael/Mannich/lactamization reaction shown in Table 1 was initiated by an organocatalytic thiol-Michael addition of benzenethiol 3a and (E)-ethyl 2-(1-methyl-2-oxoindolin-3-ylidene) acetate 4 a. ${ }^{16}$ The reaction mixture containing 5a was used directly for the Mannich reaction with an imine generated in situ from benzaldehyde 6a and $\mathrm{NH}_{4} \mathrm{OAc}$. Compound 7a resulting from the Mannich reaction was cyclized to form spiro- γ-lactam oxindole 2a. During the method development, seven catalysts (cat-1 to cat-7) including the reported recyclable fluorous catalyst cat- $\mathbf{1}^{17}$ were screened for the thiol-Michael addition of 4-methylbenzenethiol 3a and oxindole 4 using toluene as a solvent (Table 1, entries 1-7). After 3 h at room temperature, the solution of 5 a was reacted with $\mathrm{NH}_{4} \mathrm{OAc}$ and benzaldehyde $\mathbf{6 a}$ in the presence of piperidine for the Mannich reaction at $40^{\circ} \mathrm{C}$ for 12 h . EtOH was used as a cosolvent to improve substrate solubility. It was found that reactions with cat-1, cat-2, cat-5, and cat-7 gave product 2a around 90% yields (Table 1, entries 1, 2, 5, and 7) with around 55% ee and $>1.25: 1 \mathrm{dr}$. Because cat- 1 is recyclable, it was used as the catalyst for reaction condition optimization at lower temperaure for better stereoselectivity. Different bases (piperidine, $\mathrm{DBU}, \mathrm{Et}_{3} \mathrm{~N}$) and cosolvents ($\mathrm{EtOH}, \mathrm{MePh}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}$) were tested for the Mannich reactions. It was found that the Michael addition in MePh at $-20{ }^{\circ} \mathrm{C}$ followed by the Mannich/lactamization reactions at $25^{\circ} \mathrm{C}$ with 0.5 equiv of piperidine and EtOH as a cosolvent gave spiro- γ -

[^0]

Figure 1. Biologically active γ-lactams and spirooxindoles.

Scheme 1. Asymmetric Synthetic Methods for Spiro- γ-lactam Oxindoles

this work

lactam oxindole 2a in 77\% yield with 83% ee and 6:1 dr (Table 1, entry 12). An improved ee of 93% was obtained using a modified reaction procedure of mixing 4 and cat- 1 under -20 ${ }^{\circ} \mathrm{C}$ for 1 h before dropwise addition of ice-cold 4methylbenzenethiol 3 solution in MePh (Table 1, entry 13). This process allows better interaction of oxindole 4 with cat- 1 before the addition of 3 . Without using a base for the Mannich reaction, product yield dropped to 17% (Table 1, entry 16). Using $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeCN}$, or $\mathrm{H}_{2} \mathrm{O}$ as a cosolvent for the Mannich reaction, product yields decreased to $23-65 \%$, but it has no significant impact on ee and dr (Table 1, entries 17-20). It is noteworthy that a control reaction without cat-1 for the Mannich/cyclization reactions gave 2 a in slightly lower yield of 73% (entry 21) but with similar 92% ee and $6: 1 \mathrm{dr}$ as that of the reaction of with cat-1 shown in entry 13. The result indicates that for the second step of the Mannich reaction the stereochemistry was controlled by asymmetric coumpound 5 instead of cat-1. Catalyst recovery was carried out by loading the concentrated reaction mixture onto a fluorous silica gel cartridge for solid-phase extraction (F-SPE). ${ }^{18}$ There was an $80: 20 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ fraction for the product and a $100 \% \mathrm{MeOH}$ fraction for fluorous catalyst cat-1. The catalyst recovered from the concentrated MeOH fraction has an average yield of 91% and a purity $>97 \%$.

The scope of the cascade thiol-Michael/Mannich/cyclization reactions was investigated by synthesizing 14 analogues of 2 using different thiols as Michael donors and different amines and aldehydes for the Mannich reactions (Table 2). The
reactions proceeded smoothly to afford products $\mathbf{2 a - n}$ in moderate to good yields and stereoselectivities. Reactions with both electron-withdrawing ($\mathrm{F}, \mathrm{CF}_{3}$) and electron-donating (t $\mathrm{Bu}, \mathrm{SMe}$) groups at the para-position of benzaldehydes 6 gave products $2 \mathbf{b}-\mathbf{f}$ in $68-81 \%$ yields with $>87 \%$ ee and $>4: 1 \mathrm{dr}$. A reaction with a heterocyclic aldehyde gave 2 g in 75% yield with good stereoselectivity. The reactions of aliphatic aldehydes such as cyclopropanecarbaldehyde and acetaldehyde gave products 2 h and $\mathbf{2 i}$ in moderate yields and $>83 \%$ ee, but the dr was $<3: 1$. The low diastereoselectivity may result from the small steric hindrance of cyclopropyl and methyl groups of the aldehydes. The reaction of N -unsubstituted oxindole gave $\mathbf{2 j}$ in 57% yield with $1.5: 1 \mathrm{dr}$. Benzylic thiol was also used as the nucleophile, which gave products $2 \mathbf{k}$ in good yield and ee, but the dr value was only $2: 1$. Interestingly, when an aliphatic thiol was used as a nucleophile for $\mathbf{2 l}$, the ee of the major diastereomer was only 33%, but the ee of the minor isomer was still as high as 86%. Reactions with substituted substrates 4 were also studied, and the resulting product 2 m and 2 n gave moderate yields and good ee. A scale up reaction using 0.5 g of 4 was carried out under slightly revised conditions (Scheme 2) to give 2a in a consistent yield of 82% and $6: 1 \mathrm{dr}$ but a lower ee value of 72% compared with that of a small-scale reaction shown in Table 2. Further optimization might be needed to improve the ee of the scale-up reaction. The reaction using formaldehyde and allylamine was attempted. Highly reactive formaldehyde reduced the time of the Mannich reaction to 3 h to afford N allylated product 20 in 87% yield with 89% ee and $4: 1 \mathrm{dr}$ (Scheme 3). The relative configuration of spiro- γ-lactam oxindole products 2 was determined on the basis of the NOE experiment of the major diastereomer of 2 e (see the Supporting Information) and also by obtaining the X-ray structure of 2d (Figure 2, CCDC 1452249). Our attempt at introducing an amino acid as a chiral auxiliary to $2 \mathbf{d}$ was not successful. We have to rely on literature information to determine the absolute configuration of 2d. It was found that a similar thiol-Michael addition of oxindole 4 using a catalyst with an inversed (R)-C9 stereocenter has been reported by the Zhao group. ${ }^{16 g}$ The absolute configuration of thiolated stereocenter was assigned as S via the XRD study. On the basis of this information, we determined the absolute configuration of thiolated stereocenter of $\mathbf{2 d}$ as R, and the other two stereocenters were demetrmined by the X-ray structure of 2 d .

A possible organocatalytic reaction mechanism for the onepot Michael/Mannich/lactamization process is proposed in Scheme 4. Fluorous cat-1 bearing an (S)-C9 stereocenter forms

Table 1. Optimization of One-Pot Thiol-Michael/Mannich/Cyclization Reactions ${ }^{a}$

${ }^{a}$ Reaction of 0.1 mmol of 4 in 0.5 mL of $\mathrm{MePh}, ~ 1: 1: 1: 1.2$ of $3 \mathrm{a}: 4: 6 \mathrm{a}: \mathrm{NH}_{4} \mathrm{OAc} .{ }^{b} 1: 1.5 \mathrm{MePh} /$ solvent. ${ }^{c}$ Isolated yield for both diastereomers. ${ }^{d}$ ee determined by HPLC on a Venusil Chiral CA column with a mobile phase of $90: 10$ hexane $/ i-\mathrm{PrOH}$; ee of the minor diastereomer is in parentheses; negative ee for opposite ratio of the enantiomers. ${ }^{e}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{f}$ Mixing 4 and cat- 1 for 1 h before addition of ice-cold 3 a in toluene. $g_{\text {After the thiol-Michael addition reaction, cat- } 1 \text { was removed by F-SPE. }}$
a complex with the substrates to induce the Re face Michael addition to form 5 . This step is similar to that reported by the Zhao group. ${ }^{16 g}$ The formation of a (R)-thiolated stereocenter of 5 is highly selective, and 1:1-1:1.5 dr of 5 result from the α carbon of the carbonyl. The Mannich reaction of 5 with an in situ generated imine to form 7 and 7^{\prime}, which then cyclize to form spiro- γ-lactam oxindoles 2 (major) and its diasmereomer $\mathbf{2}^{\prime}$ (minor), each bearing three stereocenters. A control reaction without using cat-1 (Table 1, entry 21) indicated that the stereocontrol of the Mannich/cyclization reactions resulted from the enantioenriched intermediate 5 instead of cat-1. We believe the spirocarbon is responsible for the formation two diastereomers (1.2:1-6:1 dr) of the final products. Good evidence was obtained from 20 as shown in Scheme 3. This compound only has two stereocenters but also has two diastereomers in 4:1 ratio. This result eliminates the possibility of the carbon connected to R^{2} for forming diastereomers. The stereochemistry of spiro- δ-lactam oxindoles reported in our
previous work also supports the diastereomer assigments for products 2. ${ }^{12 \mathrm{a}}$

In summary, the first asymmetric synthesis of substituted spiro- γ-lactam oxindoles through a thiol-Michael/Mannich/ lactamization sequence is developed. The one-pot reaction promoted by a recyclable fluorous organocatalyst efficiently generates four bonds and three contiguous stereocenters in diastereo- and enantiocontrolled manners. This method could be used for making novel spiro- γ-lactam oxindoles for biological screening. Extension of this method for other thiolated spiroheterocyclic oxindoles is under investigation and will be reported in due course.

EXPERIMENTAL SECTION

General Information. Chemicals and solvents were purchased from commercial suppliers and used as received. Final products were purified on a pre-LC system with a C18 column. All isolated products were characterized on the basis of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopic data and HRMS data. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR chemical

Table 2. One-Pot Synthesis of Spiro- γ-lactam Oxindoles ${ }^{a, b}$

${ }^{a}$ See the Supporting Information for the one-pot reaction procedure. ${ }^{b}$ Islotaled yield of diastereomeric mixture. ${ }^{c}$ ee of the minor diastereomer is in parentheses.

Scheme 2. Scale-up Reaction for Asymmetric Synthesis of 2a

shifts are reported in ppm using tetramethylsilane (TMS) as an internal standard. The enantiomeric excess (ee) values of products were determined by HPLC with different chiral columns.

Scheme 3. Synthesis of N-Allyl Product 2o

General Procedure for the Synthesis of Racemic Spirocylic Oxindoles 2. To a solution of $3(0.1 \mathrm{mmol})$ and oxindole $4(0.1$ mmol, 1.0 equiv) in 0.5 mL of toluene was added $\mathrm{Et}_{3} \mathrm{~N}(0.05 \mathrm{mmol}$, 0.5 equiv). After the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h , a

Figure 2. X-ray crystallographic structure of 2d. Thermal ellipsoids were shown at 50\% probability.
Scheme 4. Stereochemistry of the One-Pot Reaction

solution of aldehyde 6 ($0.1 \mathrm{mmol}, 1.0$ equiv), $\mathrm{NH}_{4} \mathrm{OAc}(0.12 \mathrm{mmol}$, 1.2 equiv), and piperidine ($5 \mathrm{mg}, 0.5$ equiv) in 1 mL of ethanol was added. The reaction mixture was stirred at room temperature for 12 h . The concentrated reaction mixture was purified by prep-LC to give racemic product 2 . The dr values of racemic samples were also observed at LC-MS in ratios of 1:1-2:1.

General Procedure for the Synthesis of Enantioenriched Spirocylic Oxindoles 2 and Catalyst Recovery. To a solution of fluorous catalyst cat-1 ($6 \mathrm{mg}, 0.01 \mathrm{mmol}$) in 0.5 mL of toluene was added oxindole 4 ($0.1 \mathrm{mmol}, 1.0$ equiv). After the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 1 h , ice-cold thiol (0.1 mmol in 1 mL of toluene) was added dropwise in 10 min . After the mixture was stirred at $-20^{\circ} \mathrm{C}$ for 3 h , aldehyde $6\left(0.1 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{NH}_{4} \mathrm{OAc}(0.12$ mmol, 1.2 equiv), and piperidine ($5 \mathrm{mg}, 0.5$ equiv) in 1 mL of ethanol were added. The reaction mixture was then stirred at $25^{\circ} \mathrm{C}$ for 12 h . The concentrated reaction mixture was loaded onto a fluorous solidphase extraction (F-SPE) cartridge and eluted with $80: 20 \mathrm{MeOH} /$ $\mathrm{H}_{2} \mathrm{O}$ and then MeOH . The MeOH fraction was concentrated to recover the purified cat-1. The concentrated $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ fraction was purified by Angela HP-100 prep-LC to give chiral product 2.

Scale-up Reaction for Enantioenriched 2a. To a solution of fluorous catalyst cat-1 (200 mg) in 12 mL of toluene was added oxindole $4 \mathbf{a}(500 \mathrm{mg})$. After the reaction mixture was stirred at -20 ${ }^{\circ} \mathrm{C}$ for 1 h , ice-cold thiol (270 mg in 25 mL of toluene) was slowly added over 30 min . After the mixture was stirred at $-20^{\circ} \mathrm{C}$ for 3 h , aldehyde $6 \mathbf{a}(230 \mathrm{mg}), \mathrm{NH}_{4} \mathrm{OAc}(200 \mathrm{mg}, 1.2$ equiv), and piperidine ($120 \mathrm{mg}, 0.5$ equiv) in 15 mL of ethanol were added. The reaction mixture was then stirred at $25^{\circ} \mathrm{C}$ for 18 h . The concentrated reaction mixture was loaded on to a fluorous solid-phase extraction (F-SPE) cartridge and eluted with $80: 20 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ and then MeOH . The MeOH fraction was concentrated to recover the purified cat-1. The concentrated $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ fraction was purified by Angela HP-100 prep-LC ($70: 30 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 30 \mathrm{~min}$) to give chiral product 2 a .
(2'S,3R,4'R)-1-Methyl-2'-phenyl-4'-(p-tolylthio)spiro(indoline-3,3'-pyrrolidine]-2,5'-dione (2a). White solid, 78% yield (32 mg). $\mathrm{Mp}: 193-195{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=+25.3\left(c=0.70, \mathrm{CHCl}_{3}\right), 6: 1 \mathrm{dr}(2: 1$ for
racemic reaction), 93% ee. The ee was determined by HPLC analysis (Venusil Chiral CA column, 90:10 hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}): t_{\text {minor }}=12.380 \mathrm{~min}, t_{\text {major }}=11.136 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.30(\mathrm{ddd}, J=7.4,1.2,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{td}, J=7.7,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 5 \mathrm{H}), 7.01-6.92(\mathrm{~m}, 5 \mathrm{H}), 6.51-6.46(\mathrm{~m}, 1 \mathrm{H})$, $6.10(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$, $1.58\left(\mathrm{~s}, \mathrm{H}_{2} \mathrm{O}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.4,173.4,143.4$, 137.8, 134.3, 133.0, 129.4, 129.0, 128.9, 128.3, 128.1, 126.0, 125.6, 124.6, 121.8, 107.9, 63.3, 62.4, 57.2, 26.1, 21.0. HRMS (EI-TOF, $m /$ z): calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 414.1402$ [M] ${ }^{+}$, found 414.1400.
($2^{\prime} S, 3 R, 4^{\prime} R$)-2'-(4-Fluorophenyl)-1-methyl-4'-(p-tolylthio)spiro-[indoline-3,3'-pyrrolidine]-2,5'-dione (2b). White solid, 79\% yield $(34 \mathrm{mg}) . \mathrm{Mp}: 204-20{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=+15.6\left(c=0.32, \mathrm{CHCl}_{3}\right), 6: 1 \mathrm{dr}$ (1.75:1 for racemic reaction), 87% ee. The ee was determined by HPLC analysis (Venusil Chiral CA column, 90:10 hexane $/ i-\mathrm{PrOH}, 1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): t_{\text {minor }}=14.152 \mathrm{~min}, t_{\text {major }}=8.992 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 3 \mathrm{H})$, 6.94 (dd, $J=8.6,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-6.80(\mathrm{~m}, 4 \mathrm{H}), 6.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}$, 3H), 1.58 (brs, $\mathrm{H}_{2} \mathrm{O}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.5,172.4$, $164.0(\mathrm{~d}, 1 \mathrm{JC}-\mathrm{F}=248.5 \mathrm{~Hz}$), 144.6, 137.9, 133.2, 130.7, 129.7, 129.4, 128.0, 127.9, 125.8, 122.6, 122.6, 115.2, 115.0, 108.1, 103.8, 63.2, 62.8, 58.4, 25.6, 20.9. HRMS (ESI-TOF, m / z): calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}$ 433.1386 $[\mathrm{M}+\mathrm{H}]^{+}$, found 433.1378 .
($2^{\prime} S, 3 R, 4^{\prime} R$)-1-Methyl-2'-(p-tolyl)-4'-(p-tolylthio)spiro(indoline-$3,3^{\prime}$-pyrrolidine $-2,5^{\prime}$-dione (2c). White solid, 72% yield (30.8 mg). Mp: 222-224 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=-11.1\left(c=0.75, \mathrm{CHCl}_{3}\right), 4: 1 \mathrm{dr}(1.75: 1$ for racemic reaction), 94% ee. The ee was determined by HPLC analysis (Venusil Chiral CA column, $95: 5$ hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} /$ $\min , \lambda=254 \mathrm{~nm}): t_{\text {minor }}=68.72 \mathrm{~min}, t_{\text {maior }}=19.024 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.94$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{dd}, J=7.9,5.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.61(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 4.19$ (q, impurity from 4), 3.22 (s , impurity from 4), $2.80(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H})$, 1.59 (brs, $\mathrm{H}_{2} \mathrm{O}$), 1.22 (impurity from 4). ${ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}): $\delta 172.6,172.3,144.7,138.4,137.8,133.2,130.8,130.8,129.8$,
129.4, 129.2, 128.8, 126.1, 126.1, 122.6, 122.5, 108.1, 63.5, 62.8, 58.5, 25.6, 21.1, 21.0. HRMS (ESI-TOF, m / z): calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ $429.1636[\mathrm{M}+\mathrm{H}]^{+}$, found 429.1634.
(2'S,3R, $4^{\prime} R$)-2'-(4-tert-Butylphenyl)-1-methyl-4'-(p-tolylthio)-spiro[indoline-3,3'-pyrrolidine]-2,5'-dione (2d). White solid, 68\% yield (32 mg). Mp: 202-204 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=+41.5\left(c=1.45, \mathrm{CHCl}_{3}\right)$, $5: 1 \mathrm{dr}(2: 1$ for racemic reaction), 94% ee. The major diastereomer was recrystallized with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane for X-ray analysis. The ee was determined by HPLC analysis (Venusil Chiral CA column, 75:25 hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): t_{\text {minor }}=8.423 \mathrm{~min}, t_{\text {major }}=$ $6.892 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.19-$ $7.12(\mathrm{~m}, 2 \mathrm{H}), 7.12-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.89-6.82(\mathrm{~m}, 4 \mathrm{H}), 6.62(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}$, 3 H), $1.20(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 172.6, 172.3, 151.7, 144.7, 137.8, 133.2, 130.9, 130.8, 129.4, 129.3, 126.1, 125.8, 125.0, 122.6, 122.5, 108.1, 63.5, 62.9, 58.4, 34.5, 31.1, 25.5, 21.0 HRMS (ESI-TOF, m / z): calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 471.2106[\mathrm{M}+\mathrm{H}]^{+}$, found 471.2094 .
(2'S,3R,4'R)-1-Methyl-2'-(4-(methylthio)phenyl)-4'-(p-tolylthio)-spiro[indoline-3,3'-pyrrolidine]-2,5'-dione (2e). White solid, 71\% yield $(32.6 \mathrm{mg}) . \mathrm{Mp}: 179-180^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=+25.3\left(c=0.70, \mathrm{CHCl}_{3}\right)$, $5: 1 \mathrm{dr}(1.5: 1$ for racemic reaction), 91% ee. The ee was determined by HPLC analysis (Venusil Chiral CD column, 90:10 hexane/ i-PrOH, 1.0 $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): t_{\text {minor }}=10.348 \mathrm{~min}, t_{\text {major }}=7.924 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{td}, J=7.7$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-6.87(\mathrm{~m}, 8 \mathrm{H}), 6.51(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.58\left(\mathrm{~s}, \mathrm{H}_{2} \mathrm{O}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 174.3,173.5,143.3,138.7,137.8,133.0,130.9,129.4,129.1$, $128.8,126.2,125.9,125.8,124.6,121.9,108.1,63.1,62.4,57.4,26.2$, 21.0, 15.3. HRMS (ESI-TOF, m / z): calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} 461.1357$ $[\mathrm{M}+\mathrm{H}]^{+}$, found 461.1346 .
(2'S,3R, $4^{\prime} R$)-1-Methyl-4'-(p-tolylthio)-2'-(4-(trifluoromethyl)-phenyl)spiro[indoline-3,3'-pyrrolidine]-2,5'-dione (2f). White solid, 81% yield (39 mg). Mp: $175-177{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=+9.54(c=0.60$, CHCl_{3}), 6:1 dr (2:1 for racemic reaction), 89% ee. The ee was determined by HPLC analysis (Venusil Chiral CD column, 90:10 hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): t_{\text {minor }}=12.54 \mathrm{~min}, t_{\mathrm{major}}=$ $9.520 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.30(\mathrm{t}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.00$ $(\mathrm{s}, 1 \mathrm{H}), 6.87-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H})$, $4.33(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{~s}$, impurity from 4$), 2.78(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.58$ $\left(\mathrm{s}, \mathrm{H}_{2} \mathrm{O}\right), 1.22\left(\mathrm{t}\right.$, impurity from 4). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $172.8,172.3,144.5,138.3,137.9,133.1,130.5,129.6,129.4,126.6$, 125.7, 125.1, 125.1, 122.8, 122.7, 122.4, 108.3, 77.3, 77.0, 76.6, 63.3, 62.5, 58.5, 25.6, 20.9. HRMS (ESI-TOF, m / z): calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 483.1354[\mathrm{M}+\mathrm{H}]^{+}$, found 483.1338 .
($2^{\prime} R, 3 R, 4^{\prime} R$)-1-Methyl-2'-(thiophene-2-yl)-4'-(p-tolylthio)spiro-[indoline-3,3'-pyrrolidine]-2,5'-dione (2g). White solid, 75\% yield $(32 \mathrm{mg}) . \mathrm{Mp}: 182-184{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=+8.02\left(c=0.80, \mathrm{CHCl}_{3}\right), 6: 1 \mathrm{dr}$ ($2: 1$ for racemic reaction), 82% ee. The ee was determined by HPLC analysis (Venusil Chiral CA column, 95:5 hexane/i-PrOH, $1.0 \mathrm{~mL} /$ $\min , \lambda=254 \mathrm{~nm}): t_{\text {minor }}=30.724 \mathrm{~min}, t_{\text {major }}=7.000 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.09-$ $7.04(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.76(\mathrm{~m}$, $1 \mathrm{H}), 6.73-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.61-6.56(\mathrm{~m}, 1 \mathrm{H}), 6.40-6.35(\mathrm{~m}, 1 \mathrm{H})$, $5.51-5.39(\mathrm{~m}, 1 \mathrm{H}), 4.81-4.69(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=7.3,1.3 \mathrm{~Hz}$, $3 \mathrm{H}), 2.27(\mathrm{t}, J=10.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.58\left(\mathrm{~s}, \mathrm{H}_{2} \mathrm{O}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 174.0,173.0,143.7,137.9,137.2,133.0,129.5,129.3,128.8$, $126.4,126.2,125.6,125.6,124.5,122.0,108.1,77.3,77.0,76.6,62.4$, 60.0, 57.1, 26.3, 21.0. HRMS (ESI-TOF, m / z): calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} 421.1044[\mathrm{M}+\mathrm{H}]^{+}$, found 421.1052.
(2'S,3R, 4'R)-2'-Cyclopropyl-1-methyl-4'-(p-tolylthio)spiro-[indoline-3,3'-pyrrolidine]-2,5'-dione (2h). White solid, 67\% yield $(25 \mathrm{mg}) . \mathrm{Mp}: 223-225^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=+51.9\left(c=0.58, \mathrm{CHCl}_{3}\right), 3: 1 \mathrm{dr}$ (1.2:1 for racemic reaction), 85% ee (91% for minor isomer). The ee was determined by HPLC analysis (Venusil Chiral CA column, 92.5:7.5 hexane/i-PrOH, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}):$ major diastereomer: $t_{\text {minor }}=15.740 \mathrm{~min}, t_{\text {major }}=14.368 \mathrm{~min}$; minor diastereomer: $t_{\text {minor }}=10.348 \mathrm{~min}, t_{\text {major }}=7.924 \mathrm{~min}$. Major
diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.29-7.25(\mathrm{~m}, 1 \mathrm{H})$, 7.06-6.90 (m, 3H), 6.84-6.76 (m, 2H), $5.97(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 1 \mathrm{H})$, $3.25(\mathrm{~s}, 2 \mathrm{H}), 2.97(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 2 \mathrm{H}), 1.58\left(\mathrm{~s}, \mathrm{H}_{2} \mathrm{O}\right)$, $1.15-0.98(\mathrm{~m}, 1 \mathrm{H}), 0.52-0.37(\mathrm{~m}, 1 \mathrm{H}), 0.22-0.01(\mathrm{~m}, 2 \mathrm{H}),-0.47$ (ddd, $J=6.9,6.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.9$, 171.3, 144.6, 137.6, 133.0, 130.6, 129.3, 128.9, 127.8, 122.6, 122.2, 108.1, 65.3, 60.6, 58.8, 26.1, 20.9, 10.1, 2.8, 0.5. Minor diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.08(\mathrm{~m}$, $1 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{dt}, J=7.5,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H})$, $2.25(\mathrm{~s}, 3 \mathrm{H}), 0.43$ (dtdd, $J=7.7,4.5,4.0,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.22-0.15(\mathrm{~m}$, $1 \mathrm{H}), 0.07--0.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 175.1, $172.5,144.1,137.7,132.9,129.3,129.1,129.0,126.0,125.3,122.2$, 108.3, 77.3, 76.9, 76.6, 65.3, 60.4, 57.3, 26.2, 21.0, 10.3, 3.2, 0.6. HRMS (ESI-TOF, m / z): calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: 379.1480[\mathrm{M}+\mathrm{H}]^{+}$, found 379.1480.
($2^{\prime} S, 3 R, 4^{\prime} R$)-1, 2'-Dimethyl-4'-(p-tolylthio)spiro(indoline-3,3'-pyr-rolidine]-2, 5^{\prime}-dione (2i). White solid, 59% yield (21 mg), mp $157-$ $159{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=+47.6\left(\mathrm{c}=0.42, \mathrm{CHCl}_{3}\right), 2.5: 1 \mathrm{dr}(1: 1$ for racemic reaction), 83% ee (80% for minor isomer). The ee was determined by HPLC analysis (Venusil Chiral CA column, 90:10 hexane/i-PrOH, 1.0 $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): major diastereomer: $t_{\text {minor }}=11.700 \mathrm{~min}, t_{\text {major }}$ $=10.064 \mathrm{~min}$; minor diastereomer: $t_{\text {minor }}=12.600 \mathrm{~min}, t_{\text {major }}=20.052$ $\min .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{td}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.08(\mathrm{dd}, J=7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{dt}, J=8.3$, $4.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ $(\mathrm{s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.58\left(\right.$ brs, $\left.\mathrm{H}_{2} \mathrm{O}\right), 1.10(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,173.5,171.8,144.6,137.7,133.1$, 130.5, 129.3, 129.1, 126.5, 122.7, 108.2, 60.9, 59.1, 55.0, 26.0, 21.0, 14.8. HRMS (ESI-TOF, m / z): calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$: 353.1323 [M + $\mathrm{H}]^{+}$, found 353.1326 .
($2^{\prime} S, 3 R, 4^{\prime} R$)-2'-Phenyl-4'-(p-tolylthio)spiro[indoline-3,3'-pyrroli-dine]-2,5'-dione (2j). Colorless oil, 57% yield $(22.8 \mathrm{mg}), 1.5: 1 \mathrm{dr}$ (1:1 for racemic reaction), 95% ee for major diastereomer, 72% ee for minor diastereomer. The ee was determined by HPLC analysis (Regis (R, R)-Whelk-O1 column, 80:20 hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}): t_{\text {minor }}=9.632 \mathrm{~min}, t_{\text {major }}=6.940 \mathrm{~min} .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO- d_{6}): $\delta 10.52(\mathrm{~s}, 1 \mathrm{H}$, major), $10.02(\mathrm{~s}, 1 \mathrm{H}$, minor), $8.88(\mathrm{~s}, 1 \mathrm{H}$, major), 8.61 ($\mathrm{s}, 1 \mathrm{H}$, minor), $7.31-6.90(\mathrm{~m}, 20 \mathrm{H}$, major + minor $)$, 6.87-6.71 (m, 3H, major), 6.63-6.48 (m, 3H, minor), $5.06(\mathrm{~s}, 2 \mathrm{H}$, major + mimor), $4.72(\mathrm{~s}, 1 \mathrm{H}$, minor $), 4.52(\mathrm{~s}, 1 \mathrm{H}$, major), $2.22(\mathrm{~s}, 3 \mathrm{H}$, major), 2.17 (s, 3H, minor). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): δ 176.2, 175.0, 173.0, 172.6, 143.2, 142.35, 136.8, 136.5, 135.9, 135.8, $132.5,131.6,130.8,130.6,129.8,129.7,129.3,129.2,128.3,128.2$, 128.1, 127.7, 126.7, 126.3, 126.0, 125.4, 124.4, 122.0, 121.2, 109.9, 109.4, 63.1, 62.7, 62.6, 62.3, 57.5, 57.1, 21.0, 20.9. HRMS (ESI-TOF, m / z): calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 401.1323[\mathrm{M}+\mathrm{H}]^{+}$, found 401.1341.
(2'S,3R,4'R)-4'-((4-Methoxybenzyl)thio)-1-methyl-2'-phenylspiro-[indoline-3,3'-pyrrolidine]-2,5'-dione (2k). Colorless oil, 73\% yield $(32.4 \mathrm{mg}), 2: 1 \mathrm{dr}(1.25: 1$ for racemic reaction), 87% ee. The ee was determined by HPLC analysis (Regis (R, R)-Whelk-O1 column, 80:20 hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): t_{\text {minor }}=12.640 \mathrm{~min}, t_{\text {major }}=$ $15.832 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{ddd}, J=7.7,7.2,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.07-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.90$ (dd, $J=7.2$, $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.75-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~s}$, $1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~d}, J=13.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.53(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 173.2,172.6,158.7,144.5,134.0,130.2,129.3,128.9,128.6$, 128.1, 126.0, 125.9, 122.5, 122.5, 113.7, 107.9, 63.8, 62.3, 55.2, 50.7, 35.9, 25.5. HRMS (ESI-TOF, m / z): calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} 445.1586$ $[\mathrm{M}+\mathrm{H}]^{+}$, found 445.1552.

Ethyl 2-((2'S,3R,4'R)-1-Methyl-2,5'-dioxo-2'-phenylspiro-[indoline-3,3'-pyrrolidin]-4'-yl)thio)acetate (2I). Colorless oil, 78\% yield $(32 \mathrm{mg}), 1.2: 1 \mathrm{dr}(1: 1$ for racemic reaction), 33% ee (86% for minor isomer). The ee was determined by HPLC analysis (Regis (R, R)-Whelk-O1 column, 80:20 hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm})$: major diastereomer: $t_{\text {minor }}=23.080 \mathrm{~min}, t_{\text {major }}=13.780 \mathrm{~min}$; minor diastereomer: $t_{\text {minor }}=27.928 \mathrm{~min}, t_{\text {major }}=17.884 \mathrm{~min} .{ }^{1} \mathrm{H} \mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58-6.84(\mathrm{~m}, 16 \mathrm{H}$, major + minor $), 6.64(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $6.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, major), 5.27 (s, 1 H ,

SCH, major), $5.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SCH}$, minor $), 4.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$, minor $), 4.55$ (s, $1 \mathrm{H}, \mathrm{CH}$, major), $4.13\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, major), 3.95 (q , $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$, minor) $3.33\left(\mathrm{dd}, J=15.0,14.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$, major), 3.17 ($\mathrm{s}, \mathrm{NCH}_{3}, 3 \mathrm{H}$, major), 2.99 (dd, $J=14.6,15.0 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}, minor), 2.71 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$, minor), $1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$, major), $1.11\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, minor). ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.7,174.4,173.0,172.4,170.0,169.6,144.6$, $143.3,134.4,133.8,129.6,129.2,128.6,128.2,128.1,128.1,126.1$, $125.9,125.6,125.6,124.2,123.0,122.7,121.9,108.1,64.2,63.22,62.3$, 61.6, 61.3, 61.3, 52.0, 51.3, 33.9, 33.2, 26.5, 25.5, 14.0, 13.9. HRMS (EI-TOF, m / z): calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 410.1300[\mathrm{M}]^{+}$, found 410.1294.
(2'S,3R, $4^{\prime} R$)-5-Bromo-1-methyl-2'-phenyl-4'-(p-tolylthio)spiro-[indoline-3,3'-pyrrolidine]-2,5'-dione (2m). Colorless oil, 62% yield (30.5 mg), $5: 1 \mathrm{dr}$ ($1.25: 1$ for racemic reaction), 86% ee. The ee was determined by HPLC analysis (Regis (R, R)-Whelk-O1 column, 80:20 hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): t_{\text {minor }}=14.880 \mathrm{~min}, t_{\text {major }}=$ $10.292 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.40-7.33(\mathrm{~m}, 1 \mathrm{H}$, major + minor), 7.25-7.21 (m, 3H, major + minor), 7.13-7.03 (m, 5H, major + minor $), 7.00-6.92(\mathrm{~m}, 4 \mathrm{H}$, major + minor $), 6.46(\mathrm{~d}, J=8.3$ Hz, minor), $6.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$, major), $6.09(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}$, major), 4.91 (s , minor), 4.81 ($\mathrm{s}, 1 \mathrm{H}$, major), 4.32 (s, minor), 2.85 (s , 3 H, major), 2.76 (s , minor), 2.25 ($\mathrm{s}, 3 \mathrm{H}$, major), 2.24 (s, minor). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 173.9, 172.9, 142.3, 138.1, 133.9, 133.4, 133.1, 131.7, 129.5, 129.4, 129.1, 128.5, 128.3, 128.3, 126.6, 126.1, 125.5, 114.5, 109.2, 63.2, 62.5, 56.9, 26.2, 21.0. HRMS (ESI-TOF, $m /$ $z)$: calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S} 493.0585[\mathrm{M}+\mathrm{H}]^{+}$, found 493.0579.
(2'S,3R,4'R)-1,5-Dimethyl-2'-phenyl-4'-(p-tolylthio)spiro-[indoline-3,3'-pyrrolidine]-2,5'-dione (2n). White solid, 71% yield $(30 \mathrm{mg}) . \mathrm{Mp}: 178-180^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}=+13.2\left(c=0.38, \mathrm{CHCl}_{3}\right), 4: 1 \mathrm{dr}$ ($2: 1$ for racemic reaction), 83% ee. The ee was determined by HPLC analysis (Regis (R, R)-Whelk-O1 column, 80:20 hexane/ $i-\mathrm{PrOH}, 1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): t_{\text {minor }}=14.368 \mathrm{~min}, t_{\text {major }}=12.988 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.21-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 3 \mathrm{H})$, $7.01-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.49(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H})$, $2.30(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.4$, 172.2, 142.3, 137.7, 133.9, 133.2, 132.1, 130.8, 129.5, 129.3, 128.6, 128.4, 128.1, 126.1, 125.8, 123.3, 107.8, 77.3, 76.9, 76.6, 63.7, 62.9, 58.4, 25.6, 21.0, 20.9, 0.02. HRMS (ESI-TOF, m / z): calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 429.1636[\mathrm{M}+\mathrm{H}]^{+}$, found 429.1631.
(3R, $4^{\prime} R$)-1'-Allyl-1-methyl-4'-(p-tolylthio)spiro[indoline-3,3'-pyr-rolidine]-2,5'-dione (20). Colorless oil, 87% yield $(32.8 \mathrm{mg}), 4: 1 \mathrm{dr}$ (1.5:1 for racemic reaction), 89% ee. The ee was determined by HPLC analysis (Regis (R, R)-Whelk-O1column, 80:20 hexane/i-PrOH, 1.0 $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): t_{\text {minor }}=12.536 \mathrm{~min}, t_{\text {major }}=9.392 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35(\mathrm{td}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.23$ $(\mathrm{m}, 2 \mathrm{H}), 7.10(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.92$ $(\mathrm{m}, 2 \mathrm{H}), 6.79-6.74(\mathrm{~m}, 1 \mathrm{H}), 5.77$ (dddd, $J=16.9,10.1,6.7,6.2 \mathrm{~Hz}$, 1 H), 5.24 (ddd, $J=7.9,5.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), $4.62(\mathrm{~s}, 1 \mathrm{H}), 4.15$ (ddt, $J=$ $14.9,6.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.92 (ddd, $J=15.0,6.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.71 (d, J $=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$, $1.58\left(\mathrm{~s}, \mathrm{H}_{2} \mathrm{O}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.6,169.8,143.4$, 137.7, 132.9, 131.4, 129.4, 129.3, 129.1, 129.0, 123.8, 122.8, 119.6, 108.3, 57.5, 53.4, 53.1, 46.1, 26.3, 21.0. HRMS (EI-TOF, m / z): calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 378.1402[\mathrm{M}]^{+}$, found 378.1400.

ASSOCIATED CONTENT

(S) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b00653.

Experimental details and analytical data for all new compounds; ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HPLC spectra for the products (PDF)
Single-crystal X-ray crystallography data for product 2d (CIF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: wei2.zhang@umb.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Joseph P. Healey Research Grant and the Center for Green Chemistry at the University of Massachusetts Boston for support. Jerry P. Jasinski acknowledges the NSF-MRI program (CHE-1039027) for funds to purchase the X-ray diffractometer. We also acknowledge Jeremy H. Hyatt, Cécilia Clamens, and Uriel Tayvah for their involvement in this project.

REFERENCES

(1) (a) Fenical, W.; Jensen, P. R.; Palladino, M. A.; Lam, K. S.; Lloyd, G. K.; Potts, B. C. Bioorg. Med. Chem. 2009, 17, 2175-2180. (b) Okazaki, Y.; Ishizuka, A.; Ishihara, A.; Nishioka, T.; Iwamura, H. J. Org. Chem. 2007, 72, 3830-3839. (c) Stuk, T. L.; Assink, B. K.; Bates, R. C.; Erdman, D. T.; Fedij, V.; Jennings, S. M.; Lassig, J. A.; Smith, R. J.; Smith, T. L. Org. Process Res. Dev. 2003, 7, 851-855. (d) Duan, J. W.; Chen, L.; Wasserman, Z. R.; Lu, Z.; Liu, R.-Q.; Covington, M. B.; Qian, M.; Hardman, K. D.; Magolda, R. L.; Newton, R. C.; Christ, D. D.; Wexler, R. R.; Decicco, C. P. J. Med. Chem. 2002, 45, 4954-4957. (e) Masse, C. E.; Morgan, A. J.; Adams, J.; Panek, J. S. Eur. J. Org. Chem. 2000, 2000, 2513-2528. (f) Bergmann, R.; Gericke, R. J. Med. Chem. 1990, 33, 492-504.
(2) Okazaki, Y.; Ishizuka, A.; Ishihara, A.; Nishioka, T.; Iwamura, H. J. Org. Chem. 2007, 72, 3830-3839.
(3) Tan, Q. D.; Martin, S. K.; Fettinger, C. J.; Shaw, T. J. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 6781-6786.
(4) Vintonyak, V. V.; Warburg, k.; Kruse, H.; Grimme, S.; Hübel, K.; Rauh, D.; Waldmann, H. Angew. Chem., Int. Ed. 2010, 49, 5902-5905.
(5) Crosignani, S.; Page, P.; Missotten, M.; Colovray, V.; Cleva, C.; Arrighi, J.-F.; Atherall, J.; Macritchie, J.; Martin, T.; Humbert, Y.; Gaudet, M.; Pupowicz, D.; Maio, M.; Pittet, P.-A.; Golzio, L.; Giachetti, C.; Rocha, C.; Bernardinelli, G.; Filinchuk, Y.; Scheer, A.; Schwarz, M. K.; Chollet, A. J. Med. Chem. 2008, 51, 2227-2243.
(6) Reviews on spirooxindoles: (a) Cheng, D.; Ishihara, Y.; Tan, B.; Barbas, C. F., III. ACS Catal. 2014, 4, 743-762. (b) Volla, C. M. R.; Atodiresei, I.; Rueping, M. Chem. Rev. 2014, 114, 2390-2431. (c) Franz, A. K.; Hanhan, N. V.; Ball-Jones, N. R. ACS Catal. 2013, 3, 540-553. (d) Hong, L.; Wang, R. Adv. Synth. Catal. 2013, 355, 10231052. (e) Dalpozzo, R.; Bartoli, G.; Bencivenni, G. Chem. Soc. Rev. 2012, 41, 7247-7290. (f) Ball-Jones, N. R.; Badillo, J. J.; Franz, A. K. Org. Biomol. Chem. 2012, 10, 5165-5181. (g) Singh, S. G.; Desta, Y. Z. Chem. Rev. 2012, 112, 6104-6155.
(7) (a) Sharma, N.; Li, Z.; Sharma, K. U.; Van der Eycken, V. E. Org. Lett. 2014, 16, 3884-3887. (b) Tan, Q. D.; Atherton, L. A.; Smith, J. A.; Soldi, C.; Hurley, A. K.; Fettinger, C. J.; Shaw, T. J. ACS Comb. Sci. 2012, 14, 218-223. (c) Allous, I.; Comesse, S.; Sanselme, M.; Daïch, A. Eur. J. Org. Chem. 2011, 2011, 5303-5310.
(8) (a) Chen, Y.-G.; Zhong, F.; Lu, Y. Org. Lett. 2012, 14, 39553957. (b) Liu, L.; Wu, D.; Zheng, S.; Li, T.; Li, X.; Wang, S.; Li, J.; Li, H.; Wang, W. Org. Lett. 2012, 14, 134-137. (c) Ma, S.; Han, X.; Krishnan, S.; Virgil, C. S.; Stoltz, M. B. Angew. Chem., Int. Ed. 2009, 48, 8037-8041.
(9) (a) Chen, K.-Q.; Li, H.; Zhang, C.-L.; Sun, D.-Y.; Ye, S. Org. Biomol. Chem. 2016, 14, 2007-2014. (b) Jiang, D.; Dong, S.; Tang, W.; Lu, T.; Du, D. J. Org. Chem. 2015, 80, 11593-11597. (c) Zhang, B.; Feng, P.; Sun, L.-H.; Cui, Y.; Ye, S.; Jiao, N. Chem. - Eur. J. 2012, 18, 9198-9203. (d) Lv, H.; Tiwari, B.; Mo, J.; Xing, C.; Chi, Y. R. Org. Lett. 2012, 14, 5412-5415.
(10) Chen, L.; Wu, Z.; Zhang, M.-L.; Yue, D.-F.; Zhang, X.-M.; Xu, X.-Y.; Yuan, W.-C. J. Org. Chem. 2015, 80, 12668-12675.
(11) (a) Cao, Y.-M.; Shen, F.-F.; Zhang, F.-T.; Wang, R. Chem. - Eur. J. 2013, 19, 1184-1188. (b) Liu, X.-L.; Han, W.-Y.; Zhang, X.-M.;

Yuan, W.-C. Org. Lett. 2013, 15, 1246-1249. (c) Wu, H.; Zhang, L.-L.; Tian, Z.-Q.; Huang, Y.-D.; Wang, Y.-M. Chem. - Eur. J. 2013, 19, 1747-1753. (d) Tan, F.; Cheng, H.-G.; Feng, B.; Zou, Y.-Q.; Duan, S.W.; Chen, J.-R.; Xiao, W.-J. Eur. J. Org. Chem. 2013, 2013, 2071-2075. (e) Chen, W.-B.; Wu, Z.-J.; Hu, J.; Cun, L.-F.; Zhang, X.-M.; Yuan, W.C. Org. Lett. 2011, 13, 2472-2475.
(12) (a) Huang, X.; Pham, K.; Yi, W.-B.; Zhang, X.; Clamens, C.; Hyatt, H. J.; Jasinsk, P. J.; Tayvah, U.; Zhang, W. Adv. Synth. Catal. 2015, 357, 3820-3824. (b) Cheng, X.; Vellalath, S.; Goddard, R.; List, B. J. Am. Chem. Soc. 2008, 130, 15786-15787. (c) Xie, D.; Yang, L.; Lin, Y.; Zhang, Z.; Chen, D.; Zeng, X.; Zhong, G. Org. Lett. 2015, 17, 2318-2321.
(13) (a) Cerisoli, L.; Lombardo, M.; Trombini, C.; Quintavalla, A. Chem. - Eur. J. 2016, 22, 3865-3872. (b) Zhang, Y.; Lu, Y.; Tang, W.; Lu, T.; Du, D. Org. Biomol. Chem. 2014, 12, 3009-3015.
(14) (a) Que, Y.; Li, T.; Yu, C.; Wang, X.; Yao, C. J. Org. Chem. 2015, 80, 3289-3294. (b) Xiao, Z.; Yu, C.; Li, T.; Wang, X.; Yao, C. Org. Lett. 2014, 16, 3632-3635. (c) Xu, J.; Zhang, W.; Liu, Y.; Zhu, S.; Liu, M.; Hua, X.; Chen, S.; Lu, T.; Du, D. RSC Adv. 2016, 6, 1860118606. (d) Du, D.; Hu, Z.; Jin, J.; Lu, Y.; Tang, F.; Wang, B.; Lu, T. Org. Lett. 2012, 14, 1274-1277.
(15) Selected examples: (a) Zhu, G.; Wang, B.; Bao, X.; Zhang, H.; Wei, Q.; Qu, J. Chem. Commun. 2015, 51, 15510-15513. (b) Tian, L.; Hu, X.-Q.; Li, Y.-H.; Xu, P.-F. Chem. Commun. 2013, 49, 7213-7215.
(c) Guo, C.; Song, J.; Gong, L.-Z. Org. Lett. 2013, 15, 2676-2679.
(d) Wang, L.; Shi, X.-M.; Dong, W.-P.; Zhu, L.-P.; Wang, R. Chem. Commun. 2013, 49, 3458-3460. (e) Shi, F.; Tao, Z.-L.; Luo, S.-W.; Tu, S.-J.; Gong, L.-Z. Chem. - Eur. J. 2012, 18, 6885-6894.
(16) Organocatalytic thiol-Michael and Mannich reactions: (a) Chauhan, P.; Mahajan, S.; Enders, D. Chem. Rev. 2014, 114, 8807-8864. (b) Chen, J.; Meng, S.; Wang, L.; Tang, H.; Huang, Y. Chem. Sci. 2015, 6, 4184-4189. (c) Farley, A. J. M.; Sandford, C.; Dixon, D. J. J. Am. Chem. Soc. 2015, 137, 15992-15995. (d) Ding, R.; Zheng, B.; Wang, Y.; Peng, Y. Org. Lett. 2015, 17, 4128-4131. (e) Wang, R.; Liu, J.; Xu, J. Adv. Synth. Catal. 2015, 357, 159-167. (f) Lu, H.-H.; Zhang, F.-G.; Meng, X.-G.; Duan, S.-W.; Xiao, W.-J. Org. Lett. 2009, 11, 3946-3949. (g) Huang, Y.; Zheng, C.; Chai, Z.; Zhao, G. Adv. Synth. Catal. 2014, 356, 579-583. (h) Hou, W.; Wei, Q.; Peng, Y. Adv. Synth. Catal. 2016, 358, 1035-1041.
(17) (a) Huang, X.; Pham, K.; Zhang, X.; Yi, W.-B.; Hyatt, H. J.; Tran, P. A.; Jasinski, P. J.; Zhang, W. RSC Adv. 2015, 5, 71071-71075. (b) Yi, W.-B.; Zhang, Z.; Huang, X.; Tanner, A.; Cai, C.; Zhang, W. RSC Adv. 2013, 3, 18267-18270.
(18) Zhang, W.; Curran, D. P. Tetrahedron 2006, 62, 11837-11865.

[^0]: Received: March 26, 2016
 Published: June 3, 2016

